
Django Deploy Starter Guide
This guide will walk you through the process of launching a barebones Django Application on

Aptible. See it deployed live here.

📘 Deploy this starter template now and start building your app in minutes! This is the easiest

and quickest way to get started with Django. You can start building your app without having to

worry about the details of deployment.

H1: Table of Contents

● Deploy Django App

○ Prerequisites

○ Clone the Repo

○ Static and Media Files Handling

○ Custom Configuration

○ Using Docker Compose

● Testing and Quality Assurance

● Scaling and Maintenance

● Troubleshooting and Debugging

H1: Deploy a Django App on Aptible

Deploying a Django app using Docker Compose simplifies the setup by orchestrating the app, its

dependencies, and configurations in a harmonized environment. Docker Compose enables

developers to define multi-container applications, ensuring consistency and eliminating

compatibility issues. Users clone the app's repository and set up a docker-compose.yml file

detailing services and configurations.

Launching the entire application environment in Aptible is then just a matter of running a single

Docker Compose command. This method streamlines scaling, maintenance, and ensures

https://docs.djangoproject.com/en/4.1/intro/tutorial01/
https://app-52709.on-aptible.com/
https://app.aptible.com/create

Unset

consistency across different environments, making Django app deployment more efficient and

reliable.

H2: Prerequisites

This Django deployment guide has the following prerequisites:

a. Create an Aptible account

b. Install Git

c. Install pip

d. Install the Aptible CLI

e. Add an SSH public key to your Aptible user account.

f. Install Docker and Docker Compose.

H2: Clone the Repo

Clone the template-django repo to your local machine.

To get a copy of the Django app's source code on your local machine, use the git clone

command:

git clone https://github.com/your_username/your_django_app.git

The code above will create a directory named your_django_app in your current directory,

containing all the files from the repository.

Make sure to replace your_username and your_django_app with the appropriate username

and repository name. If you're using a Git platform other than GitHub, like GitLab or Bitbucket,

adjust the URL accordingly.

H2: Static and Media Files Handling

Handling static and media files correctly is a common challenge when deploying Django

applications. Here's a step-by-step guide for setting up static and media files handling for a

Django app on Aptible.

https://dashboard.aptible.com/signup
https://git-scm.com/downloads
https://pip.pypa.io/en/stable/installation/
https://www.aptible.com/docs/cli
https://www.aptible.com/docs/public-key-authentication
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://github.com/aptible/template-django

Unset

Unset

1. Set up File Storage on Amazon S3:

Due to the ephemeral nature of containers in platforms like Aptible, it's common to use cloud

storage solutions like Amazon S3 for serving media files.

a. Create an S3 bucket via the AWS Management Console or AWS CLI. Take note of your

S3 bucket name because we’ll use it in a later step.

b. Note your AWS credentials (we’ll use them later): AWS_ACCESS_KEY_ID and

AWS_SECRET_ACCESS_KEY.

2. Install Required Packages

a. To integrate Amazon S3 with your Django app, you'll need some packages:

pip install boto3 django-storages

3. Configure Django to Use S3:

a. Modify your Django settings.py:

INSTALLED_APPS += ['storages']

AWS_ACCESS_KEY_ID = os.environ.get('AWS_ACCESS_KEY_ID')

AWS_SECRET_ACCESS_KEY = os.environ.get('AWS_SECRET_ACCESS_KEY')

AWS_STORAGE_BUCKET_NAME = os.environ.get('AWS_STORAGE_BUCKET_NAME')

AWS_S3_CUSTOM_DOMAIN = '%s.s3.amazonaws.com' % AWS_STORAGE_BUCKET_NAME

AWS_S3_OBJECT_PARAMETERS = {

 'CacheControl': 'max-age=86400',

}

Static files (CSS, JavaScript, images)

AWS_STATIC_LOCATION = 'static'

STATIC_URL = 'https://%s/%s/' % (AWS_S3_CUSTOM_DOMAIN, AWS_STATIC_LOCATION)

STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'

Media files (uploads)

AWS_PUBLIC_MEDIA_LOCATION = 'media/public'

DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'

MEDIA_URL = 'https://%s/%s/' % (AWS_S3_CUSTOM_DOMAIN, AWS_PUBLIC_MEDIA_LOCATION)

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html

Unset

Unset

4. Set Environment Variables in Aptible

a. Update the environment variables on Aptible to include your AWS credentials (replace
your_access_key below with your AWS_SECRET_ACCESS_KEY) and the S3 bucket name
(replace your_bucket_name below):

aptible config:set --app your-app-name AWS_ACCESS_KEY_ID=your_access_key

AWS_SECRET_ACCESS_KEY=your_secret_key AWS_STORAGE_BUCKET_NAME=your_bucket_name

5. Run Collectstatic

a. Whenever you deploy or make changes to static files, run the collectstatic command
to push them to S3:

python manage.py collectstatic

b. This will collect all your static files and upload them to your S3 bucket.

6. Handling User Uploaded Files (Media):

a. With the above configuration, any file that gets uploaded by a user will be stored in the

media/public directory in your S3 bucket and served using an auto-generated S3 URL.

7. Secure Media Files (Optional):

a. If you wish to serve media files privately, you can use Amazon S3's signed URLs. This

requires changes to your Django views and models to generate signed URLs that expire

after a given time. You can use boto3 for secure S3 media delivery.

H2: Custom Configuration

When deploying a Dockerized Django application, custom configurations ensure the app runs

efficiently and securely.

1. Environment Variables:

https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html

Unset

Unset

Python

Aptible uses environment variables for configuration. This ensures that sensitive information isn't

hard-coded in your codebase and provides a way to adjust configurations without changing the

code.

a. Set basic Django Configurations

aptible config:set --app your-app-name SECRET_KEY=mysecretkey DEBUG=False

ALLOWED_HOSTS=mydomain.com

● SECRET_KEY: Django's secret key for cryptographic signing. The SECRET_KEY: is

automatically generated for your project. It is essentially arbitrary in terms of its content

but is designed to be cryptographically random and secure.

● DEBUG: Turn it off (False) in production for security reasons.

● ALLOWED_HOSTS: The domain(s) from which your app will be accessible.

b. Database Configuration

If you've set up a database for your Django app on Aptible, you'll get a DATABASE_URL.

Use it to configure the database for Django:

aptible config:set --app your-app-name DATABASE_URL=your-database-url

In your settings.py:

import dj_database_url

DATABASES = {

 'default': dj_database_url.config(default=os.environ.get('DATABASE_URL'))

}

2. Static and Media Files

https://www.aptible.com/docs/configuration

Unset

Unset

Unset

a. If you’re serving status and media files via Amazon S3, do the following: Update the

Django settings (settings.py) accordingly and set the relevant environment variables

on Aptible.

b. Example for Amazon S3

aptible config:set --app your-app-name AWS_STORAGE_BUCKET_NAME=mybucket

AWS_S3_REGION_NAME=region-name AWS_ACCESS_KEY_ID=myaccesskey

AWS_SECRET_ACCESS_KEY=mysecretkey

3. Email Configuration

a. If you're using a transactional email service like SendGrid:

aptible config:set --app your-app-name EMAIL_HOST=smtp.sendgrid.net

EMAIL_HOST_USER=apikey EMAIL_HOST_PASSWORD=sendgrid-api-key EMAIL_PORT=587

EMAIL_USE_TLS=True

Ensure that the Django settings.py is set up to use the aforementioned environment

variables for sending emails. Doing so enables your app to fetch these variables to send

emails using the configured email service (in this case, SendGrid). For example, in your

settings.py, you might have something like: this:

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

EMAIL_HOST = os.environ.get('EMAIL_HOST')

EMAIL_HOST_USER = os.environ.get('EMAIL_HOST_USER')

EMAIL_HOST_PASSWORD = os.environ.get('EMAIL_HOST_PASSWORD')

EMAIL_PORT = os.environ.get('EMAIL_PORT')

EMAIL_USE_TLS = os.environ.get('EMAIL_USE_TLS') == 'True'

4. Third-party Integration

a. If your Django app integrates with other services/APIs (e.g., payment gateways, third-party

APIs), set the respective API keys or configuration as environment variables:

Unset

Unset

Unset

Unset

aptible config:set --app your-app-name STRIPE_API_KEY=mystripeapikey

ANOTHER_API_KEY=myotherapikey

5. Caching

a. If you're using Redis or Memcached for caching, ensure that the cache URL is set as an

environment variable and Django's caching settings are appropriately configured.

6. Custom Domains

a. If you have a custom domain for your app:

aptible config:set --app your-app-name ALLOWED_HOSTS=your-custom-domain.com

7. Security Settings

a. To enhance security, configure other Django security settings using environment variables
(e.g., SECRET_KEY, DEBUG, ALLOWED_HOSTS’).

aptible config:set --app your-app-name SECURE_SSL_REDIRECT=True

CSRF_COOKIE_SECURE=True SESSION_COOKIE_SECURE=True

8. Scaling and Performance

a. Based on your app's needs, set environment variables for performance, like the number

of worker processes for Gunicorn.

aptible config:set --app your-app-name WEB_CONCURRENCY=4

9. Periodic Tasks

a. If you use Celery for asynchronous tasks, ensure that the broker (like RabbitMQ) is set

up, and its URL is provided as an environment variable.

https://www.aptible.com/docs/configuration
https://www.aptible.com/docs/configuration

Unset

Always test your configurations in a staging environment before applying them to production.

Also, keep sensitive keys and configurations secret and avoid hardcoding them in the app or

version control system. See our best practices guide for more.

H2: Using Docker Compose

Docker Compose ensures that developers work in a consistent environment that closely mirrors

production, minimizing the risk of deployment problems. Aptible offers a secure and compliant

platform that is optimized for the deployment of containerized applications.

Together, these tools create an environment where Django apps can be developed, tested,

and deployed with maximum efficiency and reliability. This makes the combination of

Docker Compose and Aptible a popular choice for Django developers.

H3: Local Development with Docker Compose:

1. Django Docker Configuration:

a. Django Dockerfile:

Create a Dockerfile in your Django app's root directory:

FROM python:3.8-slim

WORKDIR /app

COPY requirements.txt /app/
RUN pip install --no-cache-dir -r requirements.txt

COPY . /app/

CMD ["gunicorn", "myapp.wsgi:application", "--bind", "0.0.0.0:8000"]

Make sure to replace myapp with the name of your Django project.

Note: not all Django apps use gunicorn. It's just one option among several. When you

run a Django app in development mode using python manage.py runserver, it uses

https://www.aptible.com/docs/configuration
https://www.aptible.com/docs/best-practices-guide

Unset

Unset

Django’’s built-in development server. This server is suitable for development but is not

recommended for production use due to performance and security concerns.

For production deployments, users can deploy uWSGI and mod_wsgi (an Apache module

There are also several other servers and methods that exist to serve Django apps.

b. Requirements:

Ensure you have a requirements.txt in your root directory that lists your Python

dependencies.

2. Docker Compose Setup:

a. Create a docker-compose.yml in the root directory:

version: '3'

services:
 web:
 build: .
 ports:
 - "8000:8000"
 depends_on:
 - db
 db:
 image: postgres:13
 environment:
 - POSTGRES_DB=mydatabase
 - POSTGRES_USER=user
 - POSTGRES_PASSWORD=password

3. Run your Django app with Docker Compose

docker-compose up

a. You should be able to access your Django app at http://localhost:8000.

H3: Deploying to Aptible

1. Push your Docker Image to Aptible:

https://www.aptible.com/blog/heroku-to-aptible-migration-guide

Unset

Unset

Unset

Unset

a. Build your Docker Image

docker build -t your-django-image-name /path/to/your/build

b. Push the image to Aptible’s Registry

docker tag: This command assigns a new tag to an existing Docker image. It's useful

when you want to have multiple tags pointing to the same image ID, or when you want to

rename tags, or point existing tags to a different image.

docker tag your-django-image-name:latest

registry.aptible.com/my-aptible-app/your-django-image-name:latest

In this command, you're creating (or overwriting) a tag

registry.aptible.com/my-aptible-app/your-django-image-name:late

st for the image your-django-image-name:latest.

docker push: This command pushes a Docker image or a repository to a registry.

docker push registry.aptible.com/my-aptible-app/your-django-image-name:latest

After tagging the image in the previous step, you're now pushing the image with its new

tag to the Aptible registry.

3. Deploy your Docker Image

aptible deploy --app APP_HANDLE --docker-image
registry.aptible.com/my-aptible-app/your-django-image-name:latest.

4. Configure Environmental Variables:

a. Set up environment variables for your Django app, especially for SECRET_KEY, DEBUG,

ALLOWED_HOSTS, and database configurations.

Unset

aptible config:set --app APP_HANDLE SECRET_KEY=mysecretkey DEBUG=False

ALLOWED_HOSTS=mydomain.com

b. The SECRET_KEY in Django is a critical setting used for cryptographic signing. It's

essential for the security of a Django application and should be kept secret.

1. Purpose of SECRET_KEY: The SECRET_KEY is used for session verification, CSRF

protection, and more. It's vital for ensuring data integrity and security.

2. Generation: When starting a new Django project using the django-admin

startproject command, Django automatically generates a unique SECRET_KEY for

you. This is typically found in the settings.py file of your project.

3. Setting for Deployment: For deployments, especially in production, it's essential

not to hard-code this key in settings.py or any other public file (e.g., version

control). Instead, it should be set as an environment variable, ensuring it's not

exposed or easily accessible.

4. Generating a New SECRET_KEY: If a user needs to generate a new SECRET_KEY

(for instance, if they believe their existing key might have been compromised),

there are several ways to do so:

● Use Django's built-in utilities:

● pythonCopy code

● from django.core.management.utils import get_random_secret_key

● print(get_random_secret_key())

● Use online tools or other methods to generate a 50-character

random string.

5. Safety Precautions: Once a SECRET_KEY is set, it should not be changed without

care, as doing so will invalidate certain data tied to the original key, like existing

user sessions or reset tokens.

Unset

Unset

Unset

Unset

H3: Database Setup:

1. Create a Database in Aptible:

aptible db:create my-django-db --type postgres --environment ENV_HANDLE

This command will provide you with a postgres database URL. Aptible also supports the
following database types:

● MySQL
● MongoDB
● CouchDB
● Elasticsearch
● InfluxDB
● Redis
● RabbitMQ

Learn more about databases in Aptible.

2. Configure Django to Use the Aptible Database:

a. First, install the Aptible CLI:

curl -s https://www.aptible.com/cli/aptible-cli-latest.tar.gz | tar -C

/usr/local/bin -xzf -

b. Log in to your Aptible dashboard

aptible login

c. Retrieve the DATABASE_URL.for your database, replacing <ENVIRONMENT> with your

environment name, and <DATABASE_HANDLE> with your database's handle:

aptible config --app <ENVIRONMENT> | grep DATABASE_URL

https://www.aptible.com/docs/databases

Unset

Java

d. Configure Django to use the DATABASE_URL.

First, install the necessary package:

pip install dj-database-url

 Ensure you have dj-database-url in your requirements.txt.

e. In your Django settings.py, use a package like dj-database-url to parse the
DATABASE_URL

import dj_database_url

DATABASES = {

 'default': dj_database_url.config(default=os.environ.get('DATABASE_URL'))

}

f. Make sure to have dj-database-url in your requirements.txt.

H2: Testing and Quality Assurance

Ensuring the reliability, functionality, and performance of your Dockerized Django app is

more than just a technical requirement. It is also about safeguarding the user experience

and your brand's reputation. When deploying on a platform like Aptible, these aspects of

quality assurance take on even greater importance. Aptible is designed to handle secure

and compliant deployments, making it a popular choice for sensitive applications.

Therefore, your testing must be thorough, covering not just app-specific checks but also

the hosting environment and platform-specific nuances.

As you proceed with the deployment of your Django app on Aptible, it is essential to adopt

a holistic approach to testing and quality assurance. This will ensure that the app not only

functions optimally but also takes advantage of Aptible's unique features and benefits.

Note: Replace [APP_HANDLE] and [ENVIRONMENT_HANDLE] with appropriate names for your

application and environment.

1. Setting up your Test Environment on Aptible:

Unset

a. Start by creating a new environment for testing on Aptible. This ensures that your main

app remains unaffected during testing.

b. Use the aptible apps:create [APP_HANDLE] --environment

[ENVIRONMENT_HANDLE] command to set up a separate testing environment.

2. Deploying to the Test Environment

a. After setting up your tests locally, push your Dockerized Django app to your Aptible test

environment.

b. Use the aptible deploy --app [APP_HANDLE] command after making sure your

Dockerfile is correctly configured. In other words, ensure you're:

i. Using an appropriate base image for your Django app,

ii. That all your project's dependencies are installed,

iii. That your app reads all required environment variables like SECRET_KEY, DEBUG,
ALLOWED_HOSTS

iv. Configurations related to serving static and media files are correctly set up

v. The CMD or ENTRYPOINT in your Dockerfile should correctly start your Django

app.

vi. The Dockerfile does not contain sensitive information or secrets

vii. Sending your application logs to stdout or stderr

viii. Creating a mechanism to handle database migrations.

3. Running Unit Test:

a. Once deployed, run your unittest or pytest tests using:

aptible ssh --app [APP_HANDLE] --command "python manage.py test [app_name]"

4. Integration and Functional Tests:

a. Ensure your database and other required services are linked.

b. Run integration and functional tests using the above SSH command, but specify the

appropriate test files.

5. Automate Testing Workflow

https://www.aptible.com/docs/environments

Unset

a. Consider using Aptible's CI/CD integrations to automatically run tests when changes are

pushed to your codebase.

6. Performance Testing

a. Deploy tools like 'Locust' or 'JMeter' on Aptible and simulate user loads to gauge

performance.

7. Security Testing:

a. Regularly scan your deployed app on Aptible using the Aptible security scan.

8. Docker-specific Testing on Aptible:

a. Ensure that your Django app interacts correctly with other services in the test

environment on Aptible by running integration tests that touch all linked services.

9. Regression Testing

a. Regularly redeploy and retest your app using the above steps whenever there are

changes to your codebase.

10. Cleanup

a. Once testing is complete and you're satisfied, ensure to remove the test environment to

avoid unnecessary charges.

aptible apps:deprovision --app [APP_HANDLE]

Tips

● Continuously review and improve your test suite as your app evolves.

● If your Django app has a frontend component, consider using browser testing platforms

that integrate with Aptible to test across different browsers and devices.

● See our Best Practices Guide for more information on setting up your Aptible account with

a production ready environment.

<Replace [APP_HANDLE] and [ENVIRONMENT_HANDLE] with appropriate names for your

application and environment. >

https://www.aptible.com/docs/continuous-integration-provider-deployment
https://www.aptible.com/docs/best-practices-guide

H2: Scaling and Maintenance

Applications hosted on Aptible may encounter fluctuating demands. To manage this, users can

either allocate additional resources to their environment or extend their deployment to include

more containers.

Aptible uses a load balancer to manage traffic across multiple containers, ensuring efficient

distribution of network requests. Aptible's scaling configurations support various methods, which

are detailed in the subsequent sections.

Learn more about how scaling works on Aptible.

H3: Manual Scaling

In Aptible, manual scaling offers users the ability to intentionally adjust resources based on

anticipated needs. This means you can pre-emptively allocate more containers or resources

when expecting higher traffic or scale down during off-peak periods to conserve resources.

To manually scale your app, navigate to the deployment settings in the Aptible dashboard.

Navigate to the Environment in which your App lives, select the Apps tab, select the Django App,

then select Scale.

https://www.aptible.com/docs/scaling

Unset

To scale your Aptible app, you can use the aptible apps:scale command, the Aptible dashboard,

or the Aptible Terraform Provider.

From here, you can specify the number of containers or the amount of resources to allocate. This

method provides greater control over the resources available to your application, but it can also

be more expensive. You should carefully consider your application's demands and monitor its

performance closely to ensure that you are not over-provisioning resources.

In addition to scaling horizontally, you can also scale vertically by increasing the resources

available to a single container. This can be done by increasing the amount of CPU, memory, or

storage allocated to the container. Scaling vertically can be a more cost-effective way to scale

your application, but it can also be more complex to manage.

H3: Step-by-Step Instructions

Note: Remember to replace placeholders like [APP_HANDLE], [DATABASE_HANDLE],

[DESIRED_SIZE], and [NEW_VERSION] with the appropriate names or values for your

application and environment.

1. Monitoring Performance Metrics:

a. Before scaling, it's important to know the current performance of your app.

b. Use Aptible’s built-in metrics or metric drains.

2. Scale Containers Vertically (Resources per Container):

a. Scale your Django apps vertically by changing the size of Containers, i.e., changing their

Memory Limits and CPU Limits.

b. The available sizes are determined by the Container Profile. Aptible offers a variety of

container profiles: general purpose, CPU optimized, and RAM optimized.

c. If your app requires more resources, you can increase the container size.

aptible apps:scale --app "$APP_HANDLE" SERVICE \

https://www.aptible.com/docs/cli-apps-scale
https://registry.terraform.io/providers/aptible/aptible/latest/docs
https://www.aptible.com/docs/memory-limits
https://www.aptible.com/docs/cpu-limits
https://www.aptible.com/docs/cpu-limits

Unset

Unset

 --container-size SIZE_MB

3. Scale Containers Horizontally (Number of Containers):

a. Scale your Django apps horizontally by adding more Containers to a given Service.

Services scale up to 32 Containers.

b. Note that apps scaled to 2 or more Containers are automatically deployed in a

high-availability configuration, with Containers deployed in separate AWS Availability

Zones.

c. If you need to handle more concurrent connections or distribute traffic, add more

containers. For example, to scale the web Service to 2 containers, you would use the

following command:

aptible apps:scale --container-count [DESIRED_NUMBER]

d. Replace [DESIRED_NUMBER] with the number of containers you want.

4. Scaling Databases:

a. Aptible users can restart a database to resize it. The command below restarts the
database and resizes it to 2048 MB.

aptible db:restart "$DB_HANDLE" \
 --container-size 2048

5. Regular Backups:

a. Aptible automatically backups your databases every 24 hours. You can also configure

Aptible to retain additional daily backups, as well as monthly backups.

b. For monthly backups, Aptible will retain the last automatic backup of each month. This

means that you will always have at least one backup of your database that is no more

than one month old.

https://www.aptible.com/docs/containers
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Python

c. You can view your database backups in two ways::

i. Using the aptible backup:list command.

ii. Within the Aptible Dashboard, by navigating to the Database > Backup tab.

6. Database Maintenance & Upgrades:

a. Aptible performs maintenance for databases since they’re managed.

7. Periodic Reviews with Aptible Metrics

a. Routinely monitor the metrics provided by Aptible. This helps in understanding when to

scale up/down and in ensuring optimal performance. The following code will get the list of

all metrics for the current environment.

import aptible

def get_metrics():
 """Gets the metrics for the current environment."""
 client = aptible.Client()
 metrics = client.metrics.list()

 return metrics

def main():
 """Periodically reviews Aptible metrics."""
 metrics = get_metrics()

 for metric in metrics:
 print(metric.name, metric.value)

if __name__ == "__main__":
 main()

8. Handling Traffic Spikes:

a. For anticipated traffic spikes, pre-scale your app and database temporarily.

b. Once the traffic normalizes, you can scale down to manage costs.

8. Regular Security Reviews:

Unset

a. Periodically check for updates and ensure your Django app and all dependencies are up

to date.

b. Use Aptible's in-built features to run regular vulnerability scans.

9. Cleanup and Optimization:

a. Remove unused services, endpoints, or databases to optimize costs and performance.

aptible apps:deprovision --app [APP_HANDLE]

b. The code above needs to be specific to resource to deprovision

c. Only run this if you are sure you want to remove the app permanently

d. However, before running the command, take note:

i. Be Specific: Ensure the [APP_HANDLE] is correctly specified to avoid accidentally

deleting the wrong resource.

ii. Finality: This action is irreversible. Once you deprovision an app, it's gone forever.

Double-check and be 100% sure before proceeding.

iii. Backup: Always have a backup of your data, especially if you're making significant

changes or deletions

10. Tips:

a. Set up metric drains to monitor your Django app's performance and receive alerts when

metrics go beyond your desired thresholds.

b. Always test changes in a staging environment before applying to production.

H2: Troubleshooting and Debugging

Troubleshooting and debugging your Dockerized Django app are inevitable. Doing so will help

you maintain a reliable and smoothly functioning application. Follow these steps to identify and

resolve issues quickly:

Python

Python

H3: Logging and Error Handling:

Implementing comprehensive logging in a Django app is vital for diagnosing issues and

understanding the behavior of your application. Let's break down logging and error handling in a

Django app in Aptible:

1. Initialize Comprehensive Logging:

a. Setup Django Logging in settings.py:

○ Define formatters, handlers, and loggers as provided in your existing guide.

○ Ensure log files, such as debug.log, have correct permissions and are accessible.

b. Implement App-level Logging:

import logging

logger = logging.getLogger(__name__)

c. Handle Exceptions in your views or other components:

def some_view(request):

 try:

 # some code here
 except Exception as e:

 logger.error(f"Error encountered: {e}")

2. Capture System-Level Logs

a. Database Queries: Configure django.db.backends logger.

b. Server Operations: Ensure logs from Gunicorn, uWSGI, or other servers are captured.

3. Integrate Error Reporting Tools:

a. Use tools like Sentry:

○ Install Sentry’s SDK pip install sentry-sdk

○ Setup Sentry in your Django project:

Python

import sentry_sdk

from sentry_sdk.integrations.django import DjangoIntegration

sentry_sdk.init(

 dsn="YOUR DSN HERE",

 integrations=[DjangoIntegration()],

 traces_sample_rate=1.0,

 send_default_pii=True

)

4. Review Configuration Settings

a. Verify Debug Mode: Set debug to STDOUT (local file isn’t recommended). With STDOUT

for errors, users can review log drain to check logs.

b. Database Settings: Confirm database settings in DATABASES dictionary.

c. Domain Verification: Confirm your domain is listed in ALLOWED_HOSTS.

d. Static/Media Files: Check STATIC_URL, STATIC_ROOT, MEDIA_URL, and MEDIA_ROOT.

5. Review Configuration Settings

a. Check server or container: echo $MY_ENV_VARIABLE.t.

b. Confirm Django's accessibility to these variables using tools like python-decouple or

django-environ.

6. Confirm Third-Party Apps & Middleware:

a. Review INSTALLED_APPS and MIDDLEWARE for correct configurations.

b. Ensure no missing database tables or middleware errors.

7. Validate External Service Configurations:

a. Confirm connections to caching services, message brokers, or any third-party services.

b. Ensure no missing database tables or middleware errors.

8. Use Django's In-built Troubleshooter:

a. Run: python manage.py check and address any warnings or errors.

9. Verify Custom Configurations:

Unset

a. Ensure any custom settings (API keys, service URLs) are correctly set.

10. Examine Logs on Aptible:

a. To check your Django app's logs for any unusual behaviors or errors, you can use

Aptible's built-in logging dashboard or CLI.

b. You can also use a log drain to send your app's logs to a third-party service for analysis.

This can be useful if you want to use a more sophisticated logging solution than Aptible's

built-in logging.

c. Choose a Log Management Service: Aptible doesn't store logs for you long term.

Instead, you'll use a Log Drain to send logs to a third-party log storage and analysis

platform.

i. Navigate to the Aptible dashboard

ii. Choose your environment

iii. Click on the “Log Drains” option on the sidebar

iv. Click on “New Log Drain”

v. Select the type of Log Drain that corresponds to your log management service

(3.g. “Syslog TLS,” “HTTPS,” etc.).

vi. Provide the endpoint information. This is typically given to you by your log

management service. For example for Syslog it could be something like

logsN.papertrailapp.com:XXXXX

d. Ensure your Django App is Logging Properly

i. By default, Django logs errors, but if you want more detailed logs, update your

Django

settings.py

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {

 'django': {
 'handlers': ['console'],
 'level': 'DEBUG', # Change this as per your needs
 'propagate': True,
 },
 },
}

This configuration logs Django-related messages to the console, which Aptible captures

and can forward to your log drain.

e. Monitor and Analyze Your Logs

Once logs start flowing into your log management service
● Set up alerts to be notified about critical errors or suspicious activities

● Regularly review logs to ensure the application is running smoothly

● Use the search and visualization tools of your log management service to dig

deep into issues.

f. Troubleshoot Issues

 When issues arise:

● Use filters to narrow down the logs to a specific time frame or severity level

● Identify patterns — Are errors coming from a specific part of your app?

● Correlate with other events> Were there any deployments or changes around the

same time?

● Contact Aptible Support if you’re stuck

	Django Deploy Starter Guide
	H1: Table of Contents
	H1: Deploy a Django App on Aptible
	H2: Prerequisites
	H2: Clone the Repo
	H2: Static and Media Files Handling
	H2: Custom Configuration
	H2: Using Docker Compose
	H3: Local Development with Docker Compose:
	H3: Deploying to Aptible
	H3: Database Setup:

	H2: Testing and Quality Assurance
	H2: Scaling and Maintenance
	H3: Manual Scaling
	H3: Step-by-Step Instructions

	H2: Troubleshooting and Debugging
	H3: Logging and Error Handling:

